Informed Circular Fields for Global Reactive Obstacle Avoidance of Robotic Manipulators

verfasst von
Marvin Becker, Philipp Caspers, Tom Hattendorf, Torsten Lilge, Sami Haddadin, Matthias A. Müller
Abstract

In this paper a global reactive motion planning framework for robotic manipulators in complex dynamic environments is presented. In particular, the circular field predictions (CFP) planner from Becker et al. (2021) is extended to ensure obstacle avoidance of the whole structure of a robotic manipulator. Towards this end, a motion planning framework is developed that leverages global information about promising avoidance directions from arbitrary configuration space motion planners, resulting in improved global trajectories while reactively avoiding dynamic obstacles and decreasing the required computational power. The resulting motion planning framework is tested in multiple simulations with complex and dynamic obstacles and demonstrates great potential compared to existing motion planning approaches.

Organisationseinheit(en)
Institut für Regelungstechnik
Externe Organisation(en)
Technische Universität München (TUM)
Typ
Aufsatz in Konferenzband
Seiten
1017-1022
Anzahl der Seiten
6
Publikationsdatum
01.07.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Steuerungs- und Systemtechnik
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2212.05815 (Zugang: Offen)
https://doi.org/10.1016/j.ifacol.2023.10.1698 (Zugang: Geschlossen)