Institute of Automatic Control Research
ERC-StG Project Cont4Med

Cont4Med - Estimation and control under limited information with application to biomedical systems

 

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 948679).

 

Project Overview

Summary

The goal of this project is to develop estimation and control strategies for systems where only a (very) limited amount of information (measurements and models) is available. The main motivation to consider these problems are biomedical applications, where such a small amount of available information is often inherent. Examples include hormone concentration measurements when considering thyroidal diseases (which are typically only taken every few days or even weeks) or monitoring the size of a tumor. Estimating the current state of the system and devising appropriate control actions is very challenging in such applications. This is not covered by existing approaches in the literature, necessitating the development of novel methods and tools.

Within this project, we will in particular focus on the following aspects. First, observability of nonlinear systems subject to few (sampled) measurements will be studied and sampling strategies together with suitable nonlinear state estimators will be derived. Second, state estimation and control strategies will be developed for situations with only partial or no model knowledge. Again, this is of intrinsic importance in biomedical applications where often the underlying physical principles are only partially understood or too complex. This necessitates the design of data- and learning-based methods, for which desired guarantees can be given, even in case of few measurements. Third, the developed tools will be extended to large-scale systems, where estimation and control has to be achieved in a distributed fashion.

The successful achievement of the project goals will

  1. enable estimation and control in systems with very few, sampled measurements,
  2. constitute a big step towards a holistic data-based systems and control theory,
  3. result in a new, data-driven, paradigm for the control of large-scale systems, and
  4. enable the design of systematic, personalized, and optimal control strategies in biomedical applications.

Further Information

More information on the project can be found on CORDIS

Publications

  • Alsalti, M.; Lopez, V. G. & Müller, M. A. (2024): An efficient data-based off-policy Q-learning algorithm for optimal output feedback control of linear systemsProceedings of the 6th Annual Learning for Dynamics \& Control Conference More info
    arXiv: 2312.03451
  • Alsalti, M.; Barkey, M.; Lopez, V. G. & Müller, M. A. (2024): Sample- and computationally efficient data-driven predictive controlProceedings of the 22nd IEEE European Control Conference 2024
    DOI: 10.23919/ECC64448.2024.10591022
    arXiv: 2309.11238
  • Lopez, V. G.; Alsalti, M. & Müller, M. A. (2023): Efficient Off-Policy Q-Learning for Data-Based Discrete-Time LQR ProblemsIEEE Transactions on Automatic Control, pp. 1-12
    DOI: 10.1109/TAC.2023.3235967
  • Alsalti, M.; Lopez, V. G. & Müller, M. A. (2023): On the design of persistently exciting inputs for data-driven control of linear and nonlinear systemsIEEE Control Systems Letters, vol. 7, pp. 2629 - 2634
    DOI: 10.1109/LCSYS.2023.3287133
    arXiv: 2303.08707
  • Alsalti, M.; Lopez, V. G; Berberich, J.; Allgöwer, F. & Müller, M. A. (2023): Data-Based Control of Feedback Linearizable SystemsIEEE Transactions on Automatic Control (Early Access)
    DOI: 10.1109/TAC.2023.3249289
    arXiv: 2204.01148
  • Lopez, V. G. & Müller, M. A. (2023): An efficient off-policy reinforcement learning algorithm for the continuous-time LQR problemAccepted for IEEE 62nd Conference on Decision and Control (CDC)
    DOI: 10.1109/CDC49753.2023.10384256
    arXiv: 2303.17819
  • Alsalti, M.; Lopez, V. G.; Berberich, J.; Allgöwer, F. & Müller, M. A. (2023): Data-driven nonlinear predictive control for feedback linearizable systems22nd IFAC World Congress: Yokohama, Japan, July 9-14, 2023. IFAC-PapersOnLine, Vol. 56, Issue 2, pp. 617-624
    DOI: 10.1016/j.ifacol.2023.10.1636
    arXiv: 2211.06339
  • Wolff, T. M. & Lopez, V. G. & Müller, M. A. (2023): Robust Stability of Gaussian Process Based Moving Horizon Estimation2023 IEEE 62nd Conference on Decision and Control (CDC), pp. 4087-4093
    DOI: 10.1109/CDC49753.2023.10383304
    arXiv: 2304.06530
  • Menzel, M.; Wolff, T. M.; Dietrich, J. W. & Müller, M. A. (2023): Model predictive control for the prescription of antithyroid agentsProceedings on Automation in Medical Engineering More info
    arXiv: 2307.16690
  • Krauss, I.; Lopez, V. G. & Müller, M. A. (2023): Sample-based nonlinear detectability for discrete-time systemssubmitted
    arXiv: 2312.13658
  • Alsalti, M.; Lopez, V. G. & Müller, M. A. (2023): Notes on data-driven output-feedback control of linear MIMO systemssubmitted
    arXiv: 2311.17484
  • Alsalti, M.; Markovsky, I.; Lopez, V. G. & Müller, M. A. (2023): Data-based system representations from irregularly measured datasubmitted
    arXiv: 2307.11589
  • Markovsky, I.; Alsalti, M. ; Lopez, V. G. & Müller, M. A. (2023): Identification from data with periodically missing output samplessubmitted
    DOI: 10.15488/15821
  • Wolff, T.; Dietrich, J. W. & Müller, M. A. (2022): Optimal hormone replacement therapy in hypothyroidism - a model predictive control approachFrontiers in Endocrinology, 13: 884018
    DOI: 10.3389/fendo.2022.884018
  • Wolff, T. M.; Lopez, V. G. & Müller, M. A. (2022): Data-Based Moving Horizon Estimation for Linear Discrete-Time Systems2022 European Control Conference (ECC), pp. 1778-1783
    DOI: 10.23919/ecc55457.2022.9838331
    arXiv: 2111.04979
  • Berberich, J.; Köhler, J.; Müller, M. A. & Allgöwer, F. (2022): Linear tracking MPC for nonlinear systems part II: the data-driven caseIEEE Trans. Automat. Control, Vol. 67, Issue 9, pp. 4406-4421
    DOI: 10.1109/TAC.2022.3166851
    arXiv: 2105.08567
  • Berberich, J.; Köhler, J.; Müller, M. A. & Allgöwer, F. (2022): Linear tracking MPC for nonlinear systems part I: the model-based caseIEEE Trans. Automat. Control, Vol. 67, Issue 9, pp. 4390-4405
    DOI: 10.1109/TAC.2022.3166872
    arXiv: 2105.08560
  • Lopez, V. G. & Müller, M. A. (2022): On a continuous-time version of Willems' lemmaIEEE 61st Conference on Decision and Control (CDC), pp. 2759-2764
    DOI: 10.1109/CDC51059.2022.9992347
  • Köhler, M.; Berberich, J.; Müller, M. A. & Allgöwer, F. (2022): Data-driven distributed MPC of dynamically coupled linear systemsIFAC-PapersOnLine, Vol. 55, Issue 30, pp. 365-370, 25th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2022)
    DOI: 10.1016/j.ifacol.2022.11.080
  • Krauss, I.; Lopez, V. G. & Müller, M. A. (2022): Sample-based observability of linear discrete-time systems2022 IEEE 61st Conference on Decision and Control (CDC)
    DOI: 10.1109/CDC51059.2022.9993267
  • Wolff, T. M.; Veil, C.; Dietrich, J. W. & Müller, M. A. (2022): Mathematical Modeling and Simulation of Thyroid Homeostasis: Implications for the Allan-Herndon-Dudley SyndromeFrontiers in Endocrinology, Vol. 13, No. 882788
    DOI: 10.3389/fendo.2022.882788
  • Alsalti, M.; Berberich, J.;Lopez, V. G.; Allgöwer, F. & Müller, M. A. (2022): Practical exponential stability of a robust data-driven nonlinear predictive control schemeSupplementary material - technical report
    arXiv: 2204.01150
  • Wolff, T.; Lopez, V. G. & Müller, M. A. (2022): Robust Data-Driven Moving Horizon Estimation for Linear Discrete-Time Systemssubmitted
    arXiv: 2210.09017
  • Alsalti, M.; Berberich, J.; Lopez, V. G.; Allgöwer, F. & Müller, M. A. (2021): Data-Based System Analysis and Control of Flat Nonlinear Systems60th IEEE Conference on Decision and Control (CDC), pp. 1484-1489
    DOI: 10.1109/CDC45484.2021.9683327
    arXiv: 2103.02892
  • Berberich, J.; Köhler, J.; Müller, M. A. & Allgöwer, F. (2021): Data-driven model predictive control: closed-loop guarantees and experimental resultsat–Automatisierungstechnik, vol 69
    DOI: 10.1515/auto-2021-0024